

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 9 www.netacad.com

Lab - Create a Python Unit Test (Instructor Version)

Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 3.5.7 Lab - Create a Python Unit Test

Objectives

Part 1: Launch the DEVASC VM

Part 2: Explore Options in the unittest Framework

Part 3: Test a Python Function with unittest

Background / Scenario

Unit tests examine independent units of code, like functions, classes, modules, and libraries. There are many
reasons for writing a script using Python’s unittest library. One obvious reason is that if you find an issue in
isolated code by deliberate testing, you know that the problem is in the function or other unit under test. The
problem is not in the larger application that may call this function. You will also know exactly what triggered
the error because you wrote the unit test that exposed the issue. Bugs found this way are usually quick and
easy to fix, and fixes made at this detailed level are less likely to cause unanticipated side effects later on in
other code that relies on the tested code.

You can run unit tests manually if the code is small, but typically unit tests should be automated. When writing
a unit test, think about the following:

 The unit test should be simple and easy to implement.

 The unit test should be well documented, so it's easy to figure out how to run the test, even after several
years.

 Consider the test methods and inputs from every angle.

 Test results should be consistent. This is important for test automation.

 Test code should work independently of code being tested. If you write tests that need to change program
state, capture state before changing it, and change it back after the test runs.

 When a test fails, results should be easy to read and clearly point out what is expected and where the
issues are.

In this lab, you will explore the unittest framework and use unittest to test a function.

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

https://itexamanswers.net/3-5-7-lab-create-a-python-unit-test-answers.html

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 9 www.netacad.com

Part 2: Explore Options in the unittest Framework

Python provides a Unit Testing Framework (called unittest) as part of the Python standard library. If you are
not familiar with this framework, study the “Python unittest Framework” to familiarize yourself. Search for it on
the internet to find the documentation at python.org. You will need that knowledge or documentation to
answer questions in this part.

Question

What unittest class do you use to create an individual unit of testing?

Type your answers here.

The unittest module provides a base class, TestCase, which may be used to create new test cases.

A test runner is responsible for executing tests and providing you with results. A test runner can be a
graphical interface but, in this lab, you will use the command line to run tests.

Questions:

How does the test runner know which methods are a test?

Type your answers here.

Methods whose names start with the letters test_ informs the test runner about which methods are
tests.

What command will list all of the command line options for unittest shown in the following output?

devasc@labvm:~/labs/devnet-src$ python3 -m unittest -h

<output omitted>

optional arguments:

 -h, --help show this help message and exit

 -v, --verbose Verbose output

 -q, --quiet Quiet output

 --locals Show local variables in tracebacks

 -f, --failfast Stop on first fail or error

 -c, --catch Catch Ctrl-C and display results so far

 -b, --buffer Buffer stdout and stderr during tests

 -k TESTNAMEPATTERNS Only run tests which match the given substring

Examples:

 python3 -m unittest test_module - run tests from test_module

 python3 -m unittest module.TestClass - run tests from module.TestClass

 python3 -m unittest module.Class.test_method - run specified test method

 python3 -m unittest path/to/test_file.py - run tests from test_file.py

<output omitted>

For test discovery all test modules must be importable from the top level

directory of the project.

devasc@labvm:~/labs/devnet-src$

Type your answers here.

The command is python3 -m unittest -h

Part 3: Test a Python Function with unittest

In this part, you will use unittest to test a function that performs a recursive search of a JSON object. The
function returns values tagged with a given key. Programmers often need to perform this kind of operation on
JSON objects returned by API calls.

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 9 www.netacad.com

This test will use three files as summarized in the following table:

File Description

recursive_json_search.py This script will include the json_search() function we want to test.

test_data.py This is the data the json_search() function is searching.

test_json_search.py
This is the file you will create to test the json_search() function in the
recursive_json_search.py script.

Step 1: Review the test_data.py file.

Open the ~/labs/devnet-src/unittest/test_data.py file and examine its contents. This JSON data is typical of
data returned by a call to Cisco’s DNA Center API. The sample data is sufficiently complex to be a good test.
For example, it has dict and list types interleaved.

devasc@labvm:~/labs/devnet-src$ more unittest/test_data.py

key1 = "issueSummary"

key2 = "XY&^$#*@!1234%^&"

data = {

 "id": "AWcvsjx864kVeDHDi2gB",

 "instanceId": "E-NETWORK-EVENT-AWcvsjx864kVeDHDi2gB-1542693469197",

 "category": "Warn",

 "status": "NEW",

 "timestamp": 1542693469197,

 "severity": "P1",

 "domain": "Availability",

 "source": "DNAC",

 "priority": "P1",

 "type": "Network",

 "title": "Device unreachable",

 "description": "This network device leaf2.abc.inc is unreachable from controll

er. The device role is ACCESS.",

 "actualServiceId": "10.10.20.82",

 "assignedTo": "",

 "enrichmentInfo": {

 "issueDetails": {

 "issue": [

 {

--More--(12%)

Step 2: Create the json_search() function that you will be testing.

Our function should expect a key and a JSON object as input parameters, and return a list of matched
key/value pairs. Here is the current version of the function that needs to be tested to see if it is working as
intended. The purpose of this function is to import the test data first. Then it searches for data that matches
the key variables in the test_data.py file. If it finds a match, it will append the matched data to a list. The
print() function at the end prints the contents for the list for the first variable key1 = "issueSummary".

from test_data import *

def json_search(key,input_object):

 ret_val=[]

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 9 www.netacad.com

 if isinstance(input_object, dict): # Iterate dictionary

 for k, v in input_object.items(): # searching key in the dict

 if k == key:

 temp={k:v}

 ret_val.append(temp)

 if isinstance(v, dict): # the value is another dict so repeat

 json_search(key,v)

 elif isinstance(v, list): # it's a list

 for item in v:

 if not isinstance(item, (str,int)): # if dict or list repeat

 json_search(key,item)

 else: # Iterate a list because some APIs return JSON object in a list

 for val in input_object:

 if not isinstance(val, (str,int)):

 json_search(key,val)

 return ret_val

print(json_search("issueSummary",data))

a. Open the ~/labs/devnet-src/unittest/recursive_json_search.py file.

b. Copy the code above into the file and save it.

Note: If you are viewing this lab as a PDF file, then you may need to edit the line breaks to make the
code valid. Note that the inline comments should not break to the next line. When pasted into the
recursive_json_search.py, there should be 21 lines of code inclusive of the open comment # Fill the
Python code in this file.

c. Run the code. You should get no errors and output of [] indicating an empty list. If the json_search()
function was coded correctly (which it is not), this would tell you that there is no data with the
"issueSummary" key reported by JSON data returned by the Cisco DNA Center API. In other words, there
are no issues to report.

devasc@labvm:~/labs/devnet-src/unittest$ python3 recursive_json_search.py

[]

devasc@labvm:~/labs/devnet-src/unittest$

d. But how do you know that the json_search() function is working as intended? You could open the
test_data.py file and search for the key “issueSummary”, as shown below. If you did, you would indeed
find that there is an issue. This is a small data set and a relatively simple recursive search. However,
production data and code is rarely this simple. Therefore, testing code is vital to quickly finding and fixing
errors in your code.

<output omitted>

 "issue": [

 {

 "issueId": "AWcvsjx864kVeDHDi2gB",

 "issueSource": "Cisco DNA",

 "issueCategory": "Availability",

 "issueName": "snmp_device_down",

 "issueDescription": "This network device leaf2.abc.inc is unreachable from

controller. The device role is ACCESS.",

 "issueEntity": "network_device",

 "issueEntityValue": "10.10.20.82",

 "issueSeverity": "HIGH",

 "issuePriority": "",

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 9 www.netacad.com

 "issueSummary": "Network Device 10.10.20.82 Is Unreachable From Controller",

 "issueTimestamp": 1542693469197,

 "suggestedActions": [

 {

<output omitted>

Step 3: Create some unit tests that will test if the function is working as intended.

a. Open the ~ labs/devnet-src/unittest/test_json_search.py file.

b. In the first line of the script after the comment, import the unittest library.

import unittest

c. Add lines to import the function you are testing as well as the JSON test data the function uses.

from recursive_json_search import *

from test_data import *

d. Now add the following json_search_test class code to the test_json_search.py file. The code creates
the subclass TestCase of the unittest framework. The class defines some test methods to be used on
the json_search() function in the recursive_json_search.py script. Notice that each test method begins
with test_, enabling the unittest framework to discover them automatically. Add the following lines to the
bottom of your ~labs/devnet-src/unittest/test_json_search.py file:

class json_search_test(unittest.TestCase):

 '''test module to test search function in `recursive_json_search.py`'''

 def test_search_found(self):

 '''key should be found, return list should not be empty'''

 self.assertTrue([]!=json_search(key1,data))

 def test_search_not_found(self):

 '''key should not be found, should return an empty list'''

 self.assertTrue([]==json_search(key2,data))

 def test_is_a_list(self):

 '''Should return a list'''

 self.assertIsInstance(json_search(key1,data),list)

In the unittest code, you are using three methods to test the search function:

1) Given an existing key in the JSON object, see if the testing code can find such a key.

2) Given a non-existent key in the JSON object, see if the testing code confirms that no key can be
found.

3) Check if our function returns a list, as it should always do.

To create these tests, the script uses some of the built-in assert methods in the unittest TestCase class
to check for conditions. The assertTrue(x) method checks if a condition is true and assertIsInstance(a,
b) checks if a is an instance of the b type. The type used here is list.

Also, notice that the comments for each method are specified with the triple single quote ('''). This is

required if you want the test to output a description of the test method when it runs. Using the single hash
symbol (#) for the comment would not print out the description of a failed test.

e. For the last part of the script, add the unittest.main() method. This enables running unittest from the
command line. The purpose of if __name__ == ‘__main__’ is to make sure that the unittest.main()
method runs only if the script is run directly. If the script is imported into another program, unittest.main()
will not run. For example, you might use a different test runner than unittest to run this test.

if __name__ == '__main__':

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 9 www.netacad.com

 unittest.main()

Step 4: Run the test to see the initial results.

a. Run the test script in its current state to see what results it currently returns. First, you see the empty list.
Second, you see the .F. highlighted in the output. A period (.) means a test passed and an F means a test
failed. Therefore, the first test passed, the second test failed, and the third test passed.

devasc@labvm:~/labs/devnet-src/unittest$ python3 test_json_search.py

 []

.F.

==

FAIL: test_search_found (__main__.json_search_test)

key should be found, return list should not be empty

--

Traceback (most recent call last):

 File "test_json_search.py", line 11, in test_search_found

 self.assertTrue([]!=json_search(key1,data))

AssertionError: False is not true

--

Ran 3 tests in 0.001s

FAILED (failures=1)

devasc@labvm:~/labs/devnet-src/unittest$

b. To list each test and its results, run the script again under unittest with the verbose (-v) option. Notice
that you do not need the .py extension for the test_json_search.py script. You can see that your test
method test_search_found is failing.

Note: Python does not necessarily run your tests in order. Tests are run in alphabetical order based on
the test method names.

devasc@labvm:~/labs/devnet-src/unittest$ python3 -m unittest -v

test_json_search

[]

test_is_a_list (test_json_search.json_search_test)

Should return a list ... ok

test_search_found (test_json_search.json_search_test)

key should be found, return list should not be empty ... FAIL

test_search_not_found (test_json_search.json_search_test)

key should not be found, should return an empty list ... ok

==

FAIL: test_search_found (test_json_search.json_search_test)

key should be found, return list should not be empty

--

Traceback (most recent call last):

 File "/home/devasc/labs/devent-src/unittest/test_json_search.py", line 11, in

test_search_found

 self.assertTrue([]!=json_search(key1,data))

AssertionError: False is not true

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 7 of 9 www.netacad.com

--

Ran 3 tests in 0.001s

FAILED (failures=1)

devasc@labvm:~/labs/devnet-src/unittest$

Step 5: Investigate and correct the first error in the recursive_json_search.py script.

The assertion, key should be found, return list should not be empty ... FAIL, indicates the key was not
found. Why? If we look at the text of our recursive function, we see that the statement ret_val=[] is being
repeatedly executed, each time the function is called. This causes the function to empty the list and lose
accumulated results from the ret_val.append(temp) statement, which is adding to the list created by
ret_val=[].

def json_search(key,input_object):

 ret_val=[]

 if isinstance(input_object, dict):

 for k, v in input_object.items():

 if k == key:

 temp={k:v}

 ret_val.append(temp)

a. Move the ret_val=[] out of our function in recursive_json_search.py so that the iteration does not
overwrite the accumulated list each time.

ret_val=[]

def json_search(key,input_object):

b. Save and run the script. You should get the following output which verifies that you resolved the issue.
The list is no longer empty after the script runs.

devasc@labvm:~/labs/devnet-src/unittest$ python3 recursive_json_search.py

[{'issueSummary': 'Network Device 10.10.20.82 Is Unreachable From Controller'}]

devasc@labvm:~/labs/devnet-src/unittest$

Step 6: Run the test again to see if all errors in the script are now fixed.

a. You got some output last time you ran recursive_json_search.py, you cannot yet be sure you resolved
all the errors in the script? Run unittest again without the -v option to see if test_json_search returns
any errors. Typically, you do not want to use -v option to minimize console output and make tests run
faster. At the start of the log you can see ..F, meaning that the third test failed. Also notice that the list is
still printing out. You can stop this behavior by removing the print() function in the
resursive_json_search.py script. But that is not necessary for your purposes in this lab.

devasc@labvm:~/labs/devnet-src/unittest$ python3 -m unittest test_json_search

[{'issueSummary': 'Network Device 10.10.20.82 Is Unreachable From Controller'}]

..F

==

FAIL: test_search_not_found (test_json_search.json_search_test)

key should not be found, should return an empty list

--

Traceback (most recent call last):

 File "/home/devasc/labs/devnet-src/unittest/test_json_search.py", line 14, in

test_search_not_found

 self.assertTrue([]==json_search(key2,data))

AssertionError: False is not true

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 8 of 9 www.netacad.com

--

Ran 3 tests in 0.001s

FAILED (failures=1)

devasc@labvm:~/labs/devnet-src/unittest$

b. Open the test_data.py file and search for issueSummary, which is the value for key1. You should find it
twice, but only once in the JSON data object. But if you search for the value of key2, which is
XY&^$#*@!1234%^&, you will only find it at the top where it is defined because it is not in the data JSON
object. The third test is checking to make sure it is not there. The third test comment states key should
not be found, should return an empty list. However, the function returned a non-empty list.

Step 7: Investigate and correct the second error in the recursive_json_search.py script.

a. Review the recursive_json_search.py code again. Notice that the ret_val is now a global variable after
you fixed it in the previous step. This means that its value is preserved across multiple invocations of the
json_search() function. This is a good example of why it's bad practice to use global variables within
functions.

b. To resolve this issue, wrap the json_search() function with an outer function. Delete your existing
json_search() function and replace with the refactored one below: (It won't hurt to call the function twice
but it's not best practice to repeat a function.)

from test_data import *

def json_search(key,input_object):

 """

 Search a key from JSON object, get nothing back if key is not found

 key : "keyword" to be searched, case sensitive

 input_object : JSON object to be parsed, test_data.py in this case

 inner_function() is actually doing the recursive search

 return a list of key:value pair

 """

 ret_val=[]

 def inner_function(key,input_object):

 if isinstance(input_object, dict): # Iterate dictionary

 for k, v in input_object.items(): # searching key in the dict

 if k == key:

 temp={k:v}

 ret_val.append(temp)

 if isinstance(v, dict): # the value is another dict so repeat

 inner_function(key,v)

 elif isinstance(v, list):

 for item in v:

 if not isinstance(item, (str,int)): # if dict or list repeat

 inner_function(key,item)

 else: # Iterate a list because some APIs return JSON object in a list

 for val in input_object:

 if not isinstance(val, (str,int)):

 inner_function(key,val)

 inner_function(key,input_object)

 return ret_val

print(json_search("issueSummary",data))

Lab - Create a Python Unit Test

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 9 of 9 www.netacad.com

c. Save the file and run unittest on the directory. You do not need the name of the file. This is because the
unittest Test Discovery feature will run any local file it finds whose name begins with test. You should get
the following output. Notice that all tests now pass and the list for the "issueSummary" key is populated.
You can safely delete the print() function as it would not normally be used when this test is aggregated
with other tests for a larger test run.

devasc@labvm:~/labs/devnet-src/unittest$ python3 -m unittest

[{'issueSummary': 'Network Device 10.10.20.82 Is Unreachable From Controller'}]

...

--

Ran 3 tests in 0.001s

OK

devasc@labvm:~/labs/devnet-src/unittest$
End of document

